Skip to main content
Journal cover image

A frame-invariant vector limiter for flux corrected nodal remap in arbitrary Lagrangian-Eulerian flow computations

Publication ,  Journal Article
Zeng, X; Scovazzi, G
Published in: Journal of Computational Physics
August 1, 2014

This article describes a frame-invariant vector limiter for Flux-Corrected Transport (FCT) numerical methods. Our approach relies on an objective vector projection, and, because of its intrinsic structure, the proposed approach can be generalized with ease to higher-order tensor fields.The proposed concept is applied to nodal finite element formulations and the so-called algebraic FCT paradigm, but the ideas pursued here are very general and also apply to more general instantiations of flux-corrected transport.Specifically, we consider the arbitrary Lagrangian-Eulerian (ALE) equations of compressible inviscid flows. In addition to the geometric conservation law (GCL) and the local extreme diminishing (LED) property of the original scalar limiters, the proposed approach ensures frame invariance (objectivity) for vectors. Particularly, we use an ALE strategy based on a two-stage, Lagrangian plus mesh remap (data transfer based on conservative interpolation), in which remap and limiting are performed in a synchronized way. The proposed approach is however of general applicability, is not limited to a specific ALE implementation, and can easily be generalized to computations with standard (monolithic) ALE or Eulerian reference frames.The significance of the frame-invariant limiter for vectors is demonstrated in computations of compressible materials under extreme load conditions. Extensive testing in two and three dimensions demonstrates that the proposed limiter greatly enhances the robustness and reliability of the existing methods under typical computational scenarios. © 2014 Elsevier Inc.

Duke Scholars

Published In

Journal of Computational Physics

DOI

EISSN

1090-2716

ISSN

0021-9991

Publication Date

August 1, 2014

Volume

270

Start / End Page

753 / 783

Related Subject Headings

  • Applied Mathematics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Zeng, X., & Scovazzi, G. (2014). A frame-invariant vector limiter for flux corrected nodal remap in arbitrary Lagrangian-Eulerian flow computations. Journal of Computational Physics, 270, 753–783. https://doi.org/10.1016/j.jcp.2014.03.054
Zeng, X., and G. Scovazzi. “A frame-invariant vector limiter for flux corrected nodal remap in arbitrary Lagrangian-Eulerian flow computations.” Journal of Computational Physics 270 (August 1, 2014): 753–83. https://doi.org/10.1016/j.jcp.2014.03.054.
Zeng X, Scovazzi G. A frame-invariant vector limiter for flux corrected nodal remap in arbitrary Lagrangian-Eulerian flow computations. Journal of Computational Physics. 2014 Aug 1;270:753–83.
Zeng, X., and G. Scovazzi. “A frame-invariant vector limiter for flux corrected nodal remap in arbitrary Lagrangian-Eulerian flow computations.” Journal of Computational Physics, vol. 270, Aug. 2014, pp. 753–83. Scopus, doi:10.1016/j.jcp.2014.03.054.
Zeng X, Scovazzi G. A frame-invariant vector limiter for flux corrected nodal remap in arbitrary Lagrangian-Eulerian flow computations. Journal of Computational Physics. 2014 Aug 1;270:753–783.
Journal cover image

Published In

Journal of Computational Physics

DOI

EISSN

1090-2716

ISSN

0021-9991

Publication Date

August 1, 2014

Volume

270

Start / End Page

753 / 783

Related Subject Headings

  • Applied Mathematics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences