Skip to main content
Journal cover image

Revisiting H2O Nucleation around Au+ and Hg2+: The Peculiar "Pseudo-Soft" Character of the Gold Cation.

Publication ,  Journal Article
Chaudret, R; Contreras-Garcia, J; Delcey, M; Parisel, O; Yang, W; Piquemal, J-P
Published in: Journal of chemical theory and computation
May 2014

In this contribution, we propose a deeper understanding of the electronic effects affecting the nucleation of water around the Au+ and Hg2+ metal cations using quantum chemistry. To do so, and in order to go beyond usual energetical studies, we make extensive use of state of the art quantum interpretative techniques combining ELF/NCI/QTAIM/EDA computations to capture all ranges of interactions stabilizing the well characterized microhydrated structures. The Electron Localization Function (ELF) topological analysis reveals the peculiar role of the Au+ outer-shell core electrons (subvalence) that appear already spatially preorganized once the addition of the first water molecule occurs. Thus, despite the addition of other water molecules, the electronic structure of Au(H2O)+ appears frozen due to relativistic effects leading to a maximal acceptation of only two waters in gold's first hydration shell. As the values of the QTAIM (Quantum Theory of Atoms in Molecules) cations's charge is discussed, the Non Covalent Interactions (NCI) analysis showed that Au+ appears still able to interact through longer range van der Waals interaction with the third or fourth hydration shell water molecules. As these types of interaction are not characteristic of either a hard or soft metal cation, we introduced the concept of a "pseudo-soft" cation to define Au+ behavior. Then, extending the study, we performed the same computations replacing Au+ with Hg2+, an isoelectronic cation. If Hg2+ behaves like Au+ for small water clusters, a topological, geometrical, and energetical transition appears when the number of water molecules increases. Regarding the HSAB theory, this transition is characteristic of a shift of Hg2+ from a pseudosoft form to a soft ion and appears to be due to a competition between the relativistic and correlation effects. Indeed, if relativistic effects are predominant, then mercury will behave like gold and have a similar subvalence/geometry; otherwise when correlation effects are predominant, Hg2+ behaves like a soft cation.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of chemical theory and computation

DOI

EISSN

1549-9626

ISSN

1549-9618

Publication Date

May 2014

Volume

10

Issue

5

Start / End Page

1900 / 1909

Related Subject Headings

  • Chemical Physics
  • 3407 Theoretical and computational chemistry
  • 3406 Physical chemistry
  • 0803 Computer Software
  • 0601 Biochemistry and Cell Biology
  • 0307 Theoretical and Computational Chemistry
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Chaudret, R., Contreras-Garcia, J., Delcey, M., Parisel, O., Yang, W., & Piquemal, J.-P. (2014). Revisiting H2O Nucleation around Au+ and Hg2+: The Peculiar "Pseudo-Soft" Character of the Gold Cation. Journal of Chemical Theory and Computation, 10(5), 1900–1909. https://doi.org/10.1021/ct4006135
Chaudret, Robin, Julia Contreras-Garcia, Mickaël Delcey, Olivier Parisel, Weitao Yang, and Jean-Philip Piquemal. “Revisiting H2O Nucleation around Au+ and Hg2+: The Peculiar "Pseudo-Soft" Character of the Gold Cation.Journal of Chemical Theory and Computation 10, no. 5 (May 2014): 1900–1909. https://doi.org/10.1021/ct4006135.
Chaudret R, Contreras-Garcia J, Delcey M, Parisel O, Yang W, Piquemal J-P. Revisiting H2O Nucleation around Au+ and Hg2+: The Peculiar "Pseudo-Soft" Character of the Gold Cation. Journal of chemical theory and computation. 2014 May;10(5):1900–9.
Chaudret, Robin, et al. “Revisiting H2O Nucleation around Au+ and Hg2+: The Peculiar "Pseudo-Soft" Character of the Gold Cation.Journal of Chemical Theory and Computation, vol. 10, no. 5, May 2014, pp. 1900–09. Epmc, doi:10.1021/ct4006135.
Chaudret R, Contreras-Garcia J, Delcey M, Parisel O, Yang W, Piquemal J-P. Revisiting H2O Nucleation around Au+ and Hg2+: The Peculiar "Pseudo-Soft" Character of the Gold Cation. Journal of chemical theory and computation. 2014 May;10(5):1900–1909.
Journal cover image

Published In

Journal of chemical theory and computation

DOI

EISSN

1549-9626

ISSN

1549-9618

Publication Date

May 2014

Volume

10

Issue

5

Start / End Page

1900 / 1909

Related Subject Headings

  • Chemical Physics
  • 3407 Theoretical and computational chemistry
  • 3406 Physical chemistry
  • 0803 Computer Software
  • 0601 Biochemistry and Cell Biology
  • 0307 Theoretical and Computational Chemistry