Skip to main content
Journal cover image

Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order

Publication ,  Journal Article
Siefert, C; Tuminaro, R; Gerstenberger, A; Scovazzi, G; Collis, SS
Published in: Computational Geosciences
September 1, 2014

We present a parallel algebraic multigrid (AMG) algorithm for the implicit solution of the Darcy problem discretized by the discontinuous Galerkin (DG) method that scales optimally for regular and irregular meshes. The main idea centers on recasting the preconditioning problem so that existing AMG solvers for nodal lower order finite elements can be leveraged. This is accomplished by a transformation operator which maps the solution from a Lagrange basis representation to a Legendre basis representation. While this mapping function must be user supplied, we demonstrate how easily it can be constructed for somepopular finite element representations includingquadrilateral/hexahedral and triangular/tetrahedral DG formulations. Furthermore, we show that the mapping does not depend on the Jacobian transformation between reference and physical space and so it can be constructed with very limited mesh information. Parallel performance studies demonstrate the versatility of this approach.

Duke Scholars

Published In

Computational Geosciences

DOI

EISSN

1573-1499

ISSN

1420-0597

Publication Date

September 1, 2014

Volume

18

Issue

5

Start / End Page

597 / 612

Related Subject Headings

  • Numerical & Computational Mathematics
  • 3704 Geoinformatics
  • 0499 Other Earth Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Siefert, C., Tuminaro, R., Gerstenberger, A., Scovazzi, G., & Collis, S. S. (2014). Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order. Computational Geosciences, 18(5), 597–612. https://doi.org/10.1007/s10596-014-9419-x
Siefert, C., R. Tuminaro, A. Gerstenberger, G. Scovazzi, and S. S. Collis. “Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order.” Computational Geosciences 18, no. 5 (September 1, 2014): 597–612. https://doi.org/10.1007/s10596-014-9419-x.
Siefert C, Tuminaro R, Gerstenberger A, Scovazzi G, Collis SS. Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order. Computational Geosciences. 2014 Sep 1;18(5):597–612.
Siefert, C., et al. “Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order.” Computational Geosciences, vol. 18, no. 5, Sept. 2014, pp. 597–612. Scopus, doi:10.1007/s10596-014-9419-x.
Siefert C, Tuminaro R, Gerstenberger A, Scovazzi G, Collis SS. Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order. Computational Geosciences. 2014 Sep 1;18(5):597–612.
Journal cover image

Published In

Computational Geosciences

DOI

EISSN

1573-1499

ISSN

1420-0597

Publication Date

September 1, 2014

Volume

18

Issue

5

Start / End Page

597 / 612

Related Subject Headings

  • Numerical & Computational Mathematics
  • 3704 Geoinformatics
  • 0499 Other Earth Sciences