
Bayesian nonparametric modeling for functional analysis of variance
Analysis of variance is a standard statistical modeling approach for comparing populations. The functional analysis setting envisions that mean functions are associated with the populations, customarily modeled using basis representations, and seeks to compare them. Here, we adopt the modeling approach of functions as realizations of stochastic processes. We extend the Gaussian process version to allow nonparametric specifications using Dirichlet process mixing. Several metrics are introduced for comparison of populations. Then we introduce a hierarchical Dirichlet process model which enables comparison of the population distributions, either directly or through functionals of interest using the foregoing metrics. The modeling is extended to allow us to switch the sampling scheme. There are still population level distributions but now we sample at levels of the functions, obtaining observations from potentially different individuals at different levels. We illustrate with both simulated data and a dataset of temperature versus depth measurements at different locations in the Atlantic Ocean. © 2013 The Institute of Statistical Mathematics, Tokyo.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 0104 Statistics
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 0104 Statistics