Impacts of chemistry-aerosol coupling on tropospheric ozone and sulfate simulations in a general circulation model
We have implemented fully interactive tropospheric gas-phase chemistry and sulfate aerosol modules into the new generation state-of the-art Goddard Institute for Space Studies (GISS) modelE general circulation model (GCM). The code has been developed with a unique flexibility to perform simulations in coupled or off-line (decoupled) mode. Both modes use identical chemical calculations, but the decoupled simulation relies on previously saved off-line oxidant and aerosol concentration fields whereas the coupled simulation is fully interactive. Here we describe the application of the model to isolate the impacts of the two-way chemistry-aerosol coupling on the predictions of sulfate aerosol and ozone pollution and to provide insights into the mechanisms that drive the different predictions between coupled and off-line models. On annual and global scales, the differences between the coupled and off-line simulations are small, but larger deviations do occur on regional and seasonal scales. The chemistry-aerosol coupling leads to ∼20% increases in surface sulfate over SO
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences