Volcanic and solar forcing of climate change during the preindustrial era
The climate response to variability in volcanic aerosols and solar irradiance, the primary forcings during the preindustrial era, is examined in a stratosphere-resolving general circulation model. The best agreement with historical and proxy data is obtained using both forcings, each of which has a significant effect on global mean temperatures. However, their regional climate impacts in the Northern Hemisphere are quite different. While the short-term continental winter warming response to volcanism is well known, it is shown that due to opposing dynamical and radiative effects, the long-term (decadal mean) regional response is not significant compared to unforced variability for either the winter or the annual average. In contrast, the long-term regional response to solar forcing greatly exceeds unforced variability for both time averages, as the dynamical and radiative effects reinforce one another, and produces climate anomalies similar to those seen during the Little Ice Age. Thus, long-term regional changes during the preindustrial appear to have been dominated by solar forcing.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 3708 Oceanography
- 3702 Climate change science
- 3701 Atmospheric sciences
- 0909 Geomatic Engineering
- 0405 Oceanography
- 0401 Atmospheric Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 3708 Oceanography
- 3702 Climate change science
- 3701 Atmospheric sciences
- 0909 Geomatic Engineering
- 0405 Oceanography
- 0401 Atmospheric Sciences