Data in, fact out: Automated monitoring of facts by FactWatcher
Towards computational journalism, we present FactWatcher, a system that helps journalists identify data-backed, attention-seizing facts which serve as leads to news stories. FactWatcher discovers three types of facts, including situational facts, one-of-the-few facts, and prominent streaks, through a unified suite of data model, algorithm framework, and fact ranking measure. Given an appendonly database, upon the arrival of a new tuple, FactWatcher monitors if the tuple triggers any new facts. Its algorithms efficiently search for facts without exhaustively testing all possible ones. Furthermore, FactWatcher provides multiple features in striving for an end-to-end system, including fact ranking, fact-to-statement translation and keyword-based fact search. © 2014 VLDB Endowment 2150-8097/14/08.
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 4605 Data management and data science
- 0807 Library and Information Studies
- 0806 Information Systems
- 0802 Computation Theory and Mathematics
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 4605 Data management and data science
- 0807 Library and Information Studies
- 0806 Information Systems
- 0802 Computation Theory and Mathematics