Skip to main content
Journal cover image

Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays.

Publication ,  Journal Article
Park, H; Shin, D; Kang, G; Baek, S; Kim, K; Padilla, WJ
Published in: Advanced materials (Deerfield Beach, Fla.)
December 2011

Based on conventional colloidal nanosphere lithography, we experimentally demonstrate novel graded-index nanostructures for broadband optical antireflection enhancement including the near-ultraviolet (NUV) region by integrating residual polystyrene antireflective (AR) nanoislands coating arrays with silicon nano-conical-frustum arrays. This is a feasible optimized integration method of two major approaches for antireflective surfaces: quarter-wavelength AR coating and biomimetic moth's eye structure.

Duke Scholars

Published In

Advanced materials (Deerfield Beach, Fla.)

DOI

EISSN

1521-4095

ISSN

0935-9648

Publication Date

December 2011

Volume

23

Issue

48

Start / End Page

5796 / 5800

Related Subject Headings

  • Surface Properties
  • Sunlight
  • Solar Energy
  • Silicon
  • Photons
  • Optics and Photonics
  • Nanotechnology
  • Nanostructures
  • Nanoscience & Nanotechnology
  • Microscopy, Electron, Scanning
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Park, H., Shin, D., Kang, G., Baek, S., Kim, K., & Padilla, W. J. (2011). Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays. Advanced Materials (Deerfield Beach, Fla.), 23(48), 5796–5800. https://doi.org/10.1002/adma.201103399
Park, Haesung, Dongheok Shin, Gumin Kang, Seunghwa Baek, Kyoungsik Kim, and Willie J. Padilla. “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays.Advanced Materials (Deerfield Beach, Fla.) 23, no. 48 (December 2011): 5796–5800. https://doi.org/10.1002/adma.201103399.
Park H, Shin D, Kang G, Baek S, Kim K, Padilla WJ. Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays. Advanced materials (Deerfield Beach, Fla). 2011 Dec;23(48):5796–800.
Park, Haesung, et al. “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays.Advanced Materials (Deerfield Beach, Fla.), vol. 23, no. 48, Dec. 2011, pp. 5796–800. Epmc, doi:10.1002/adma.201103399.
Park H, Shin D, Kang G, Baek S, Kim K, Padilla WJ. Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays. Advanced materials (Deerfield Beach, Fla). 2011 Dec;23(48):5796–5800.
Journal cover image

Published In

Advanced materials (Deerfield Beach, Fla.)

DOI

EISSN

1521-4095

ISSN

0935-9648

Publication Date

December 2011

Volume

23

Issue

48

Start / End Page

5796 / 5800

Related Subject Headings

  • Surface Properties
  • Sunlight
  • Solar Energy
  • Silicon
  • Photons
  • Optics and Photonics
  • Nanotechnology
  • Nanostructures
  • Nanoscience & Nanotechnology
  • Microscopy, Electron, Scanning