Complementary planar terahertz metamaterials.
Planar electric split ring resonator (eSRR) metamaterials and their corresponding inverse structures are designed and characterized computationally and experimentally utilizing finite element modeling and THz time domain spectroscopy. A complementary response is observed in transmission. Specifically, for the eSRRs a decrease in transmission is observed at resonance whereas the inverse structures display an increase in transmission. The frequency dependent effective complex dielectric functions are extracted from the experimental data and, in combination with simulations to determine the surface current density and local electric field, provide considerable insight into the electromagnetic response of our planar metamaterials. These structures may find applications in the construction of various THz filters, transparent THz windows, or THz grid structures ideal for constructing THz switching/modulation devices.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optics
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optics
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics