On the joint decoding of LDPC codes and finite-state channels via linear programming
In this paper, the linear programming (LP) decoder for binary linear codes, introduced by Feldman, et al. is extended to joint-decoding of binary-input finite-state channels. In particular, we provide a rigorous definition of LP joint-decoding pseudo-codewords (JD-PCWs) that enables evaluation of the pairwise error probability between codewords and JD-PCWs. This leads naturally to a provable upper bound on decoder failure probability. If the channel is a finite-state intersymbol interference channel, then the LP joint decoder also has the maximum-likelihood (ML) certificate property and all integer valued solutions are codewords. In this case, the performance loss relative to ML decoding can be explained completely by fractional valued JD-PCWs. © 2010 IEEE.