Skip to main content

Verification decoding of high-rate ldpc codes with applications in compressed sensing

Publication ,  Journal Article
Zhang, F; Pfister, HD
Published in: IEEE Transactions on Information Theory
July 23, 2012

This paper considers the performance of (j,k)-regular low-density parity-check (LDPC) codes with message-passing (MP) decoding algorithms in the high-rate regime. In particular, we derive the high-rate scaling law for MP decoding of LDPC codes on the binary erasure channel (BEC) and the q -ary symmetric channel (q-SC). For the BEC and a fixed j, the density evolution (DE) threshold of iterative decoding scales like \Theta (k^{-1}) and the critical stopping ratio scales like \Theta (k^{-j/(j-2)}). For the q-SC and a fixed j, the DE threshold of verification decoding depends on the details of the decoder and scales like \Theta (k^{-1}) for one decoder. Using the fact that coding over large finite alphabets is very similar to coding over the real numbers, the analysis of verification decoding is also extended to the compressed sensing (CS) of strictly sparse signals. A DE-based approach is used to analyze the CS systems with randomized-reconstruction guarantees. This leads to the result that strictly sparse signals can be reconstructed efficiently with high probability using a constant oversampling ratio (i.e., when the number of measurements scales linearly with the sparsity of the signal). A stopping-set-based approach is also used to get stronger (e.g., uniform-in-probability) reconstruction guarantees. © 1963-2012 IEEE.

Duke Scholars

Published In

IEEE Transactions on Information Theory

DOI

ISSN

0018-9448

Publication Date

July 23, 2012

Volume

58

Issue

8

Start / End Page

5042 / 5058

Related Subject Headings

  • Networking & Telecommunications
  • 4613 Theory of computation
  • 4006 Communications engineering
  • 1005 Communications Technologies
  • 0906 Electrical and Electronic Engineering
  • 0801 Artificial Intelligence and Image Processing
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Zhang, F., & Pfister, H. D. (2012). Verification decoding of high-rate ldpc codes with applications in compressed sensing. IEEE Transactions on Information Theory, 58(8), 5042–5058. https://doi.org/10.1109/TIT.2012.2201344
Zhang, F., and H. D. Pfister. “Verification decoding of high-rate ldpc codes with applications in compressed sensing.” IEEE Transactions on Information Theory 58, no. 8 (July 23, 2012): 5042–58. https://doi.org/10.1109/TIT.2012.2201344.
Zhang F, Pfister HD. Verification decoding of high-rate ldpc codes with applications in compressed sensing. IEEE Transactions on Information Theory. 2012 Jul 23;58(8):5042–58.
Zhang, F., and H. D. Pfister. “Verification decoding of high-rate ldpc codes with applications in compressed sensing.” IEEE Transactions on Information Theory, vol. 58, no. 8, July 2012, pp. 5042–58. Scopus, doi:10.1109/TIT.2012.2201344.
Zhang F, Pfister HD. Verification decoding of high-rate ldpc codes with applications in compressed sensing. IEEE Transactions on Information Theory. 2012 Jul 23;58(8):5042–5058.

Published In

IEEE Transactions on Information Theory

DOI

ISSN

0018-9448

Publication Date

July 23, 2012

Volume

58

Issue

8

Start / End Page

5042 / 5058

Related Subject Headings

  • Networking & Telecommunications
  • 4613 Theory of computation
  • 4006 Communications engineering
  • 1005 Communications Technologies
  • 0906 Electrical and Electronic Engineering
  • 0801 Artificial Intelligence and Image Processing