Co-existing responses in a harmonically-excited nonlinear structural system
A key feature of many nonlinear dynamical systems is the presence of co-existing solutions, i.e, nonlinear systems are often sensitive to initial conditions. While there have been many studies to explore this behavior from a numerical perspective, in which case it is trivial to prescribe initial conditions (for example using a regular grid), this is more challenging from an experimental perspective. This paper will discuss the basins of attraction in a simple mechanical experiment. By applying both small and large stochastic perturbations to steady-state behavior, it is possible to interrogate the initial condition space and map-out basins of attraction as system parameters are changed. This tends to provide a more complete picture of possible behavior than conventional bifurcation diagrams with their focus on local steady-state behavior. © The Society for Experimental Mechanics, Inc. 2014.