Post-processing approach for tuning multi-layered metamaterials
We propose a post-processing approach to efficiently tune the resonance frequency in double-layered terahertz metamaterials separated by a bonding agent. By heating the bonding agent, it is possible to move one metamaterial layer laterally with respect to the other. This changes the coupling between adjacent layers, thereby shifting the resonance frequency. The resonance frequency of the stacked layers continuously shifts as a function of the lateral displacement, reaching a maximum shift of 92 GHz (31% of the center frequency). We discuss the effects of vertical separation on the tunability of the two-layered structure. The post-processing approach is rather general and can be applied to different paired metamaterials in various wavelength ranges, paving the way to efficiently assemble and fine tune metamaterial sensors and filters.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 40 Engineering
- 10 Technology
- 09 Engineering
- 02 Physical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 40 Engineering
- 10 Technology
- 09 Engineering
- 02 Physical Sciences