Skip to main content
Journal cover image

Evaporation-induced evolution of the capillary force between two grains

Publication ,  Journal Article
Mielniczuk, B; Hueckel, T; Youssoufi, MSE
Published in: Granular Matter
September 30, 2014

The evolution of capillary forces during evaporation and the corresponding changes in the geometrical characteristics of liquid (water) bridges between two glass spheres with constant separation are examined experimentally. For comparison, the liquid bridges were also tested for mechanical extension (at constant volume). The obtained results reveal substantial differences between the evolution of capillary force due to evaporation and the evolution due to extension of the liquid bridges. During both evaporation and extension, the change of interparticle capillary forces consists in a force decrease to zero either gradually or via rupture of the bridge. At small separations between the grains (short & wide bridges) during evaporation and at large volumes during extension, there is a slight initial increase of force. During evaporation, the capillary force decreases slowly at the beginning of the process and quickly at the end of the process; during extension, the capillary force decreases quickly at the beginning and slowly at the end of the process. Rupture during evaporation of the bridges occurs most abruptly for bridges with wider separations (tall and thin), sometimes occurring after only 25% of the water volume was evaporated. The evolution (pinning/depinning) of two geometrical characteristics of the bridge, the diameter of the three-phase contact line and the “apparent” contact angle at the solid/liquid/gas interface, seem to control the capillary force evolution. The findings are of relevance to the mechanics of unsaturated granular media in the final phase of drying.

Duke Scholars

Published In

Granular Matter

DOI

EISSN

1434-7636

ISSN

1434-5021

Publication Date

September 30, 2014

Volume

16

Issue

5

Start / End Page

815 / 828

Related Subject Headings

  • Fluids & Plasmas
  • 5107 Particle and high energy physics
  • 4017 Mechanical engineering
  • 4004 Chemical engineering
  • 0913 Mechanical Engineering
  • 0905 Civil Engineering
  • 0904 Chemical Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Mielniczuk, B., Hueckel, T., & Youssoufi, M. S. E. (2014). Evaporation-induced evolution of the capillary force between two grains. Granular Matter, 16(5), 815–828. https://doi.org/10.1007/s10035-014-0512-6
Mielniczuk, B., T. Hueckel, and M. S. E. Youssoufi. “Evaporation-induced evolution of the capillary force between two grains.” Granular Matter 16, no. 5 (September 30, 2014): 815–28. https://doi.org/10.1007/s10035-014-0512-6.
Mielniczuk B, Hueckel T, Youssoufi MSE. Evaporation-induced evolution of the capillary force between two grains. Granular Matter. 2014 Sep 30;16(5):815–28.
Mielniczuk, B., et al. “Evaporation-induced evolution of the capillary force between two grains.” Granular Matter, vol. 16, no. 5, Sept. 2014, pp. 815–28. Scopus, doi:10.1007/s10035-014-0512-6.
Mielniczuk B, Hueckel T, Youssoufi MSE. Evaporation-induced evolution of the capillary force between two grains. Granular Matter. 2014 Sep 30;16(5):815–828.
Journal cover image

Published In

Granular Matter

DOI

EISSN

1434-7636

ISSN

1434-5021

Publication Date

September 30, 2014

Volume

16

Issue

5

Start / End Page

815 / 828

Related Subject Headings

  • Fluids & Plasmas
  • 5107 Particle and high energy physics
  • 4017 Mechanical engineering
  • 4004 Chemical engineering
  • 0913 Mechanical Engineering
  • 0905 Civil Engineering
  • 0904 Chemical Engineering