Differential top-antitop cross-section measurements as a function of observables constructed from final-state particles using pp collisions at √s = 7 TeV in the ATLAS detector
Abstract: Various differential cross-sections are measured in top-quark pair (tt) events produced in proton-proton collisions at a centre-of-mass energy of √s = 7 TeV at the LHC with the ATLAS detector. These differential cross-sections are presented in a data set corresponding to an integrated luminosity of 4.6 fb−1. The differential cross-sections are presented in terms of kinematic variables, such as momentum, rapidity and invariant mass, of a top-quark proxy referred to as the pseudo-top-quark as well as the pseudo-top-quark pair system. The dependence of the measurement on theoretical models is minimal. The measurements are performed on tt events in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of them tagged as originating from a b-quark. The hadronic and leptonic pseudo-top-quarks are defined via the leptonic or hadronic decay mode of the W boson produced by the top-quark decay in events with a single charged lepton. Differential cross-section measurements of the pseudo-top-quark variables are compared with several Monte Carlo models that implement next-to-leading order or leading-order multi-leg matrix-element calculations.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Nuclear & Particles Physics
- 5107 Particle and high energy physics
- 5106 Nuclear and plasma physics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
- 0105 Mathematical Physics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Nuclear & Particles Physics
- 5107 Particle and high energy physics
- 5106 Nuclear and plasma physics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
- 0105 Mathematical Physics