Organic semiconductor thin films deposited by resonant infrared matrix-assisted pulsed laser evaporation: A fundamental study of the emulsion target
Poly (3-hexylthiophene) (P3HT) thin films were deposited using emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) from emulsions containing different solvents and different alcohols, to investigate the impact of emulsion on film morphology. The atomic force microscopy (AFM) and grazing-incidence, wide angle x-ray scattering (GIW AXS) results show that surface morphology of RIR-MAPLE as-deposited films can be varied from rough to smooth and the microcrystalline domain orientations with respect to the substrate can be tuned from randomly oriented to preferentially oriented in the vertical direction. The demonstrated ability to tune the structural characteristics of polymer thin films by controlling the target emulsion is important for the application of organic optoelectronic devices deposited by RIR-MAPLE.