Skip to main content
Journal cover image

A Note on L∞-Bound and Uniqueness to a Degenerate Keller-Segel Model

Publication ,  Journal Article
Liu, JG; Wang, J
Published in: Acta Applicandae Mathematicae
April 1, 2016

In this note we establish the uniform (Formula presented.) -bound for the weak solutions to a degenerate Keller-Segel equation with the diffusion exponent (Formula presented.) under a sharp condition on the initial data for the global existence. As a consequence, the uniqueness of the weak solutions is also proved.

Duke Scholars

Published In

Acta Applicandae Mathematicae

DOI

EISSN

1572-9036

ISSN

0167-8019

Publication Date

April 1, 2016

Volume

142

Issue

1

Start / End Page

173 / 188

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
  • 0102 Applied Mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Liu, J. G., & Wang, J. (2016). A Note on L∞-Bound and Uniqueness to a Degenerate Keller-Segel Model. Acta Applicandae Mathematicae, 142(1), 173–188. https://doi.org/10.1007/s10440-015-0022-5
Liu, J. G., and J. Wang. “A Note on L∞-Bound and Uniqueness to a Degenerate Keller-Segel Model.” Acta Applicandae Mathematicae 142, no. 1 (April 1, 2016): 173–88. https://doi.org/10.1007/s10440-015-0022-5.
Liu JG, Wang J. A Note on L∞-Bound and Uniqueness to a Degenerate Keller-Segel Model. Acta Applicandae Mathematicae. 2016 Apr 1;142(1):173–88.
Liu, J. G., and J. Wang. “A Note on L∞-Bound and Uniqueness to a Degenerate Keller-Segel Model.” Acta Applicandae Mathematicae, vol. 142, no. 1, Apr. 2016, pp. 173–88. Scopus, doi:10.1007/s10440-015-0022-5.
Liu JG, Wang J. A Note on L∞-Bound and Uniqueness to a Degenerate Keller-Segel Model. Acta Applicandae Mathematicae. 2016 Apr 1;142(1):173–188.
Journal cover image

Published In

Acta Applicandae Mathematicae

DOI

EISSN

1572-9036

ISSN

0167-8019

Publication Date

April 1, 2016

Volume

142

Issue

1

Start / End Page

173 / 188

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
  • 0102 Applied Mathematics
  • 0101 Pure Mathematics