Skip to main content

Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes

Publication ,  Journal Article
Paschalis, A; Fatichi, S; Katul, GG; Ivanov, VY
Published in: Journal of Geophysical Research: Biogeosciences
September 1, 2015

While the importance of ecosystem functioning is undisputed in the context of climate change and Earth system modeling, the role of short-scale temporal variability of hydrometeorological forcing (∼1 h) on the related ecosystem processes remains to be fully understood. Various impacts of meteorological forcing variability on water and carbon fluxes across a range of scales are explored here using numerical simulations. Synthetic meteorological drivers that highlight dynamic features of the short temporal scale in series of precipitation, temperature, and radiation are constructed. These drivers force a mechanistic ecohydrological model that propagates information content into the dynamics of water and carbon fluxes for an ensemble of representative ecosystems. The focus of the analysis is on a cross-scale effect of the short-scale forcing variability on the modeled evapotranspiration and ecosystem carbon assimilation. Interannual variability of water and carbon fluxes is emphasized in the analysis. The main study inferences are summarized as follows: (a) short-scale variability of meteorological input does affect water and carbon fluxes across a wide range of time scales, spanning from the hourly to the annual and longer scales; (b) different ecosystems respond to the various characteristics of the short-scale variability of the climate forcing in various ways, depending on dominant factors limiting system productivity; (c) whenever short-scale variability of meteorological forcing influences primarily fast processes such as photosynthesis, its impact on the slow-scale variability of water and carbon fluxes is small; and (d) whenever short-scale variability of the meteorological forcing impacts slow processes such as movement and storage of water in the soil, the effects of the variability can propagate to annual and longer time scales.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of Geophysical Research: Biogeosciences

DOI

EISSN

2169-8961

ISSN

2169-8953

Publication Date

September 1, 2015

Volume

120

Issue

9

Start / End Page

1716 / 1740

Related Subject Headings

  • 3706 Geophysics
  • 0404 Geophysics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Paschalis, A., Fatichi, S., Katul, G. G., & Ivanov, V. Y. (2015). Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes. Journal of Geophysical Research: Biogeosciences, 120(9), 1716–1740. https://doi.org/10.1002/2015JG003002
Paschalis, A., S. Fatichi, G. G. Katul, and V. Y. Ivanov. “Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes.” Journal of Geophysical Research: Biogeosciences 120, no. 9 (September 1, 2015): 1716–40. https://doi.org/10.1002/2015JG003002.
Paschalis A, Fatichi S, Katul GG, Ivanov VY. Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes. Journal of Geophysical Research: Biogeosciences. 2015 Sep 1;120(9):1716–40.
Paschalis, A., et al. “Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes.” Journal of Geophysical Research: Biogeosciences, vol. 120, no. 9, Sept. 2015, pp. 1716–40. Scopus, doi:10.1002/2015JG003002.
Paschalis A, Fatichi S, Katul GG, Ivanov VY. Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes. Journal of Geophysical Research: Biogeosciences. 2015 Sep 1;120(9):1716–1740.

Published In

Journal of Geophysical Research: Biogeosciences

DOI

EISSN

2169-8961

ISSN

2169-8953

Publication Date

September 1, 2015

Volume

120

Issue

9

Start / End Page

1716 / 1740

Related Subject Headings

  • 3706 Geophysics
  • 0404 Geophysics