On transverse invariants from Khovanov homology
Publication
, Journal Article
Lipshitz, R; Ng, L; Sarkar, S
Published in: Quantum Topology
September 9, 2015
In [31], O. Plamenevskaya associated to each transverse knot K an element of the Khovanov homology of K. In this paper, we give two re_nements of Plamenevskaya’s invariant, one valued in Bar-Natan’s deformation (from [2]) of the Khovanov complex and another as a cohomotopy element of the Khovanov spectrum (from [20]). We show that the first of these refinements is invariant under negative flypes and SZ moves; this implies that Plamenevskaya’s class is also invariant under these moves. We go on to show that for small-crossing transverse knots K, both re_nements are determined by the classical invariants of K.
Duke Scholars
Published In
Quantum Topology
DOI
EISSN
1664-073X
ISSN
1663-487X
Publication Date
September 9, 2015
Volume
6
Issue
3
Start / End Page
475 / 513
Related Subject Headings
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0105 Mathematical Physics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Lipshitz, R., Ng, L., & Sarkar, S. (2015). On transverse invariants from Khovanov homology. Quantum Topology, 6(3), 475–513. https://doi.org/10.4171/QT/69
Lipshitz, R., L. Ng, and S. Sarkar. “On transverse invariants from Khovanov homology.” Quantum Topology 6, no. 3 (September 9, 2015): 475–513. https://doi.org/10.4171/QT/69.
Lipshitz R, Ng L, Sarkar S. On transverse invariants from Khovanov homology. Quantum Topology. 2015 Sep 9;6(3):475–513.
Lipshitz, R., et al. “On transverse invariants from Khovanov homology.” Quantum Topology, vol. 6, no. 3, Sept. 2015, pp. 475–513. Scopus, doi:10.4171/QT/69.
Lipshitz R, Ng L, Sarkar S. On transverse invariants from Khovanov homology. Quantum Topology. 2015 Sep 9;6(3):475–513.
Published In
Quantum Topology
DOI
EISSN
1664-073X
ISSN
1663-487X
Publication Date
September 9, 2015
Volume
6
Issue
3
Start / End Page
475 / 513
Related Subject Headings
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0105 Mathematical Physics
- 0101 Pure Mathematics