Characteristics of gravity waves over an Antarctic Ice sheet during an Austral Summer
While occurrences of wavelike motion in the stable boundary layer due to the presence of a significant restoring buoyancy force are rarely disputed, their modalities and interaction with turbulence remain a subject of active research. In this work, the characteristics of gravity waves and their impact on flow statistics, including turbulent fluxes, are presented using data collected above an Antarctic Ice sheet during an Austral Summer. Antarctica is an ideal location for exploring the characteristics of gravity waves because of persistent conditions of strong atmospheric stability in the lower troposphere. Periods dominated by wavelike motion have been identified by analysing time series measured by fast response instrumentation. The nature and characteristic of the dominant wavy motions are investigated using Fourier cross-spectral indicators. Moreover, a multi-resolution decomposition has been applied to separate gravity waves from turbulent fluctuations in case of a sufficiently defined spectral gap. Statistics computed after removing wavy disturbances highlight the large impact of gravity waves on second order turbulent quantities including turbulent flux calculations.
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 3702 Climate change science
- 3701 Atmospheric sciences
- 0502 Environmental Science and Management
- 0401 Atmospheric Sciences
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 3702 Climate change science
- 3701 Atmospheric sciences
- 0502 Environmental Science and Management
- 0401 Atmospheric Sciences