Bayesian inference with specified prior marginals
We show how to find bounds on posterior expectations of arbitrary functions of the parameters when the prior marginals are specified but when the complete joint prior is unspecified. We also give a theorem that is useful for finding posterior bounds in a wide range of Bayesian robustness problems. We apply these techniques to two examples. The first example involves a recent clinical trial for extracorporeal membrane oxygenation (ECMO). Our analysis may be regarded as a follow-up to a detailed Bayesian analysis given by Kass and Greenhouse who concluded that the posterior probability that the treatment is superior to the control is about .95. Their analysis, however, assumed a priori independence of the parameters. We consider other prior distributions with the same marginals as Kass and Greenhouse, but in which the parameters are not independent and conclude that, as long as a priori independence is at least approximately tenable, then ECMO seems superior to the control. The second example is the product of means problem, which has been studied in the Bayesian context by Berger and Bernardo. Here the goal is to find the posterior expectation of αβ, where α and β are the means of conditionally independent random variables X and Y. Berger and Bernardo recommended a joint prior π
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1603 Demography
- 1403 Econometrics
- 0104 Statistics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1603 Demography
- 1403 Econometrics
- 0104 Statistics