
Effects of hexavalent chromium on the survival and cell cycle distribution of DNA repair-deficient S. cerevisiae.
A broad spectrum of genetic damage results from exposure to hexavalent chromium. These lesions can result in DNA and RNA polymerase arrest, chromosomal aberrations, point mutations and deletions. Because of the complexity of Cr genotoxicity, the repair of Cr(VI)-induced DNA damage is poorly understood. Therefore, our aim was to investigate the sensitivities of DNA repair-deficient Saccharomyces cerevisiae strains to Cr(VI)-induced growth inhibition and lethality. Wild-type, translesion synthesis (rev3) and excision repair (apn1, ntg1, ntg2, rad1) mutants exhibited similar survival following Cr(VI) treatment (0-50mM) and underwent at least one population doubling within 2-4h post-treatment. The simultaneous loss of several excision repair genes (apn1 rad1 ntg1 ntg2) led to slower growth after Cr(VI) exposure (10mM) manifested as an initial delay in S phase progression. Higher concentrations of Cr(VI) (25mM) resulted in a prolonged transit through S phase in every strain tested. A G(2)/M arrest was evident within 1-2h after Cr(VI) treatment (10mM) in all strains and cells subsequently divided after this transient delay. In contrast to all other strains, only recombination-deficient (rad52, rad52 rev3) yeast were markedly hypersensitive towards Cr(VI) lethality. RAD52 mutant strains (rad52, rad52 rev3) also exhibited a significant delay (>6h) in the resumption of replication after Cr(VI) exposure which was related to the immediate and apparently terminal arrest of these yeast in G(2)/M after Cr(VI) treatment. These results, taken together with the recombinogenic effects of Cr(VI) in yeast containing a functional RAD52 gene, suggest that RAD52-mediated recombination is critical for the normal processing of lethal Cr-induced genetic lesions and exit from G(2) arrest. Furthermore, only the combined inactivation of multiple excision repair genes affects cell growth after Cr(VI) treatment.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Saccharomyces cerevisiae Proteins
- Saccharomyces cerevisiae
- N-Glycosyl Hydrolases
- Endonucleases
- Developmental Biology
- DNA-Binding Proteins
- DNA-(Apurinic or Apyrimidinic Site) Lyase
- DNA, Fungal
- DNA Repair Enzymes
- DNA Repair
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Saccharomyces cerevisiae Proteins
- Saccharomyces cerevisiae
- N-Glycosyl Hydrolases
- Endonucleases
- Developmental Biology
- DNA-Binding Proteins
- DNA-(Apurinic or Apyrimidinic Site) Lyase
- DNA, Fungal
- DNA Repair Enzymes
- DNA Repair