Skip to main content

Growth inhibition and metallothionein induction in cadmium-resistant cells by essential and non-essential metals.

Publication ,  Journal Article
Evans, RM; Patierno, SR; Wang, DS; Cantoni, O; Costa, M
Published in: Mol Pharmacol
July 1983

Essential and non-essential metal ions were compared on the basis of their growth-inhibitory potency and their mediation of metallothionein induction in a Chinese hamster ovary cell line resistant to cadmium. Cadmium-resistant cells were found to be 20-fold and 6-fold more resistant than wild-type Chinese hamster ovary cells to the non-essential metals CdCl2 and HgCl2, respectively. In contrast, cadmium-resistant cells showed 2-fold or less resistance to growth inhibition due to the metals with known or possible biological essentiality, ZnCl2, CuSO4, CoCl2, and NiCl2. Resistance to either cadmium or mercury was not due to decreased uptake as measured isotopically or by X-ray fluorescence. At concentrations near the threshold of growth inhibition, CdCl2 and ZnCl2 induced metallothionein 8- to 10-fold above background levels in cadmium-resistant cells within 8-10 hr. A 2- to 3-fold induction of this protein was produced in resistant cells by levels of HgCl2, CuSO4, and CoCl2 near the threshold of growth inhibition whereas NiCl2 produced no measurable elevations of metallothionein at concentrations below, near, and above those that inhibit cell growth. Induction of metallothionein was measured by a modified 203Hg binding assay and by [35S]cysteine incorporation. No measurable induction of metallothionein was evident in wild-type cells with any metal treatment using a reasonable quantity of cells consistent with our assay. These results in cadmium-resistant cells demonstrate selective induction of metallothionein by various metals and suggest that induction of this protein alone is not solely responsible for differences in the growth-inhibitory potential of these elements.

Duke Scholars

Published In

Mol Pharmacol

ISSN

0026-895X

Publication Date

July 1983

Volume

24

Issue

1

Start / End Page

77 / 83

Location

United States

Related Subject Headings

  • Pharmacology & Pharmacy
  • Ovary
  • Metals
  • Metallothionein
  • Metalloproteins
  • Mercury
  • Female
  • Drug Resistance
  • Cricetulus
  • Cricetinae
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Evans, R. M., Patierno, S. R., Wang, D. S., Cantoni, O., & Costa, M. (1983). Growth inhibition and metallothionein induction in cadmium-resistant cells by essential and non-essential metals. Mol Pharmacol, 24(1), 77–83.
Evans, R. M., S. R. Patierno, D. S. Wang, O. Cantoni, and M. Costa. “Growth inhibition and metallothionein induction in cadmium-resistant cells by essential and non-essential metals.Mol Pharmacol 24, no. 1 (July 1983): 77–83.
Evans RM, Patierno SR, Wang DS, Cantoni O, Costa M. Growth inhibition and metallothionein induction in cadmium-resistant cells by essential and non-essential metals. Mol Pharmacol. 1983 Jul;24(1):77–83.
Evans, R. M., et al. “Growth inhibition and metallothionein induction in cadmium-resistant cells by essential and non-essential metals.Mol Pharmacol, vol. 24, no. 1, July 1983, pp. 77–83.
Evans RM, Patierno SR, Wang DS, Cantoni O, Costa M. Growth inhibition and metallothionein induction in cadmium-resistant cells by essential and non-essential metals. Mol Pharmacol. 1983 Jul;24(1):77–83.

Published In

Mol Pharmacol

ISSN

0026-895X

Publication Date

July 1983

Volume

24

Issue

1

Start / End Page

77 / 83

Location

United States

Related Subject Headings

  • Pharmacology & Pharmacy
  • Ovary
  • Metals
  • Metallothionein
  • Metalloproteins
  • Mercury
  • Female
  • Drug Resistance
  • Cricetulus
  • Cricetinae