Skip to main content
Journal cover image

In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut.

Publication ,  Journal Article
Rawls, JF; Mahowald, MA; Goodman, AL; Trent, CM; Gordon, JI
Published in: Proc Natl Acad Sci U S A
May 1, 2007

Complex microbial communities reside within the intestines of humans and other vertebrates. Remarkably little is known about how these microbial consortia are established in various locations within the gut, how members of these consortia behave within their dynamic ecosystems, or what microbial factors mediate mutually beneficial host-microbial interactions. Using a gnotobiotic zebrafish-Pseudomonas aeruginosa model, we show that the transparency of this vertebrate species, coupled with methods for raising these animals under germ-free conditions can be used to monitor microbial movement and localization within the intestine in vivo and in real time. Germ-free zebrafish colonized with isogenic P. aeruginosa strains containing deletions of genes related to motility and pathogenesis revealed that loss of flagellar function results in attenuation of evolutionarily conserved host innate immune responses but not conserved nutrient responses. These results demonstrate the utility of gnotobiotic zebrafish in defining the behavior and localization of bacteria within the living vertebrate gut, identifying bacterial genes that affect these processes, and assessing the impact of these genes on host-microbial interactions.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Proc Natl Acad Sci U S A

DOI

ISSN

0027-8424

Publication Date

May 1, 2007

Volume

104

Issue

18

Start / End Page

7622 / 7627

Location

United States

Related Subject Headings

  • Zebrafish
  • Time Factors
  • Symbiosis
  • Pseudomonas aeruginosa
  • Movement
  • Microscopy, Electron, Transmission
  • Intestines
  • Germ-Free Life
  • Flagella
  • Animals
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Rawls, J. F., Mahowald, M. A., Goodman, A. L., Trent, C. M., & Gordon, J. I. (2007). In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut. Proc Natl Acad Sci U S A, 104(18), 7622–7627. https://doi.org/10.1073/pnas.0702386104
Rawls, John F., Michael A. Mahowald, Andrew L. Goodman, Chad M. Trent, and Jeffrey I. Gordon. “In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut.Proc Natl Acad Sci U S A 104, no. 18 (May 1, 2007): 7622–27. https://doi.org/10.1073/pnas.0702386104.
Rawls JF, Mahowald MA, Goodman AL, Trent CM, Gordon JI. In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut. Proc Natl Acad Sci U S A. 2007 May 1;104(18):7622–7.
Rawls, John F., et al. “In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut.Proc Natl Acad Sci U S A, vol. 104, no. 18, May 2007, pp. 7622–27. Pubmed, doi:10.1073/pnas.0702386104.
Rawls JF, Mahowald MA, Goodman AL, Trent CM, Gordon JI. In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut. Proc Natl Acad Sci U S A. 2007 May 1;104(18):7622–7627.
Journal cover image

Published In

Proc Natl Acad Sci U S A

DOI

ISSN

0027-8424

Publication Date

May 1, 2007

Volume

104

Issue

18

Start / End Page

7622 / 7627

Location

United States

Related Subject Headings

  • Zebrafish
  • Time Factors
  • Symbiosis
  • Pseudomonas aeruginosa
  • Movement
  • Microscopy, Electron, Transmission
  • Intestines
  • Germ-Free Life
  • Flagella
  • Animals