Skip to main content
Journal cover image

On a discrete version of Tanaka's theorem for maximal functions

Publication ,  Journal Article
Bober, J; Carneiro, E; Hughes, K; Pierce, LB
Published in: Proceedings of the American Mathematical Society
May 1, 2012

In this paper we prove a discrete version of Tanaka's Theorem \cite{Ta} for the Hardy-Littlewood maximal operator in dimension $n=1$, both in the non-centered and centered cases. For the discrete non-centered maximal operator $\widetilde{M} $ we prove that, given a function $f: \mathbb{Z} \to \mathbb{R}$ of bounded variation, $$\textrm{Var}(\widetilde{M} f) \leq \textrm{Var}(f),$$ where $\textrm{Var}(f)$ represents the total variation of $f$. For the discrete centered maximal operator $M$ we prove that, given a function $f: \mathbb{Z} \to \mathbb{R}$ such that $f \in \ell^1(\mathbb{Z})$, $$\textrm{Var}(Mf) \leq C \|f\|_{\ell^1(\mathbb{Z})}.$$ This provides a positive solution to a question of Haj{\l}asz and Onninen \cite{HO} in the discrete one-dimensional case.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Proceedings of the American Mathematical Society

DOI

ISSN

0002-9939

Publication Date

May 1, 2012

Volume

140

Issue

5

Start / End Page

1669 / 1680

Related Subject Headings

  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Bober, J., Carneiro, E., Hughes, K., & Pierce, L. B. (2012). On a discrete version of Tanaka's theorem for maximal functions. Proceedings of the American Mathematical Society, 140(5), 1669–1680. https://doi.org/10.1090/S0002-9939-2011-11008-6
Bober, J., E. Carneiro, K. Hughes, and L. B. Pierce. “On a discrete version of Tanaka's theorem for maximal functions.” Proceedings of the American Mathematical Society 140, no. 5 (May 1, 2012): 1669–80. https://doi.org/10.1090/S0002-9939-2011-11008-6.
Bober J, Carneiro E, Hughes K, Pierce LB. On a discrete version of Tanaka's theorem for maximal functions. Proceedings of the American Mathematical Society. 2012 May 1;140(5):1669–80.
Bober, J., et al. “On a discrete version of Tanaka's theorem for maximal functions.” Proceedings of the American Mathematical Society, vol. 140, no. 5, May 2012, pp. 1669–80. Manual, doi:10.1090/S0002-9939-2011-11008-6.
Bober J, Carneiro E, Hughes K, Pierce LB. On a discrete version of Tanaka's theorem for maximal functions. Proceedings of the American Mathematical Society. 2012 May 1;140(5):1669–1680.
Journal cover image

Published In

Proceedings of the American Mathematical Society

DOI

ISSN

0002-9939

Publication Date

May 1, 2012

Volume

140

Issue

5

Start / End Page

1669 / 1680

Related Subject Headings

  • 4904 Pure mathematics
  • 0101 Pure Mathematics