Skip to main content
Journal cover image

Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner.

Publication ,  Journal Article
Niu, P; Liu, L; Gong, Z; Tan, H; Wang, F; Yuan, J; Feng, Y; Wei, Q; Tanguay, RM; Wu, T
Published in: Cell Stress Chaperones
2006

Heat shock protein 70 (Hsp70) comprises proteins that have been reported to protect cells, tissues, and organisms against damage from a wide variety of stressful stimuli; however, little is known about whether Hsp70 protects against DNA damage. In this study, we investigated the relationship between Hsp70 expression and the levels of ultraviolet C (UVC)-induced DNA damage in A549 cells with normal, inhibited, and overexpressed Hsp70 levels. Hsp70 expression was inhibited by treatment with quercetin or overexpressed by transfection of plasmids harboring the hsp70 gene. The level of DNA damage was assessed by the comet assay. The results showed that the levels of DNA damage (shown as the percentage of comet cells) in A549 cells increased in all cells after exposure to an incident dose of 0, 10, 20, 40, and 80 J/m2 whether Hsp70 was inhibited or overexpressed. This response was dose dependent: a protection against UVC-induced DNA damage in cells with overexpressed Hsp70 was observed at UVC dose 20 J/m2 with a maximum at 40 J/m2 when compared with cells with normal Hsp70 levels and in quercetin-treated cells. This differential protection disappeared at 80 J/m2. These results suggest that overexpressed Hsp70 might play a role in protecting A549 cells from DNA damage caused by UVC irradiation, with a threshold of protection from at UVC irradiation-induced DNA damage by Hsp70. The detailed mechanism how Hsp70 is involved in DNA damage and possible DNA repair warrants further investigation.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Cell Stress Chaperones

DOI

ISSN

1355-8145

Publication Date

2006

Volume

11

Issue

2

Start / End Page

162 / 169

Location

Netherlands

Related Subject Headings

  • Ultraviolet Rays
  • Quercetin
  • Protein Biosynthesis
  • Plasmids
  • Humans
  • HSP70 Heat-Shock Proteins
  • Dose-Response Relationship, Radiation
  • Dose-Response Relationship, Drug
  • DNA Damage
  • DNA
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Niu, P., Liu, L., Gong, Z., Tan, H., Wang, F., Yuan, J., … Wu, T. (2006). Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner. Cell Stress Chaperones, 11(2), 162–169. https://doi.org/10.1379/csc-175r.1
Niu, Piye, Lin Liu, Zhiyong Gong, Hao Tan, Feng Wang, Jing Yuan, Youmei Feng, Qingyi Wei, Robert M. Tanguay, and Tangchun Wu. “Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner.Cell Stress Chaperones 11, no. 2 (2006): 162–69. https://doi.org/10.1379/csc-175r.1.
Niu P, Liu L, Gong Z, Tan H, Wang F, Yuan J, et al. Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner. Cell Stress Chaperones. 2006;11(2):162–9.
Niu, Piye, et al. “Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner.Cell Stress Chaperones, vol. 11, no. 2, 2006, pp. 162–69. Pubmed, doi:10.1379/csc-175r.1.
Niu P, Liu L, Gong Z, Tan H, Wang F, Yuan J, Feng Y, Wei Q, Tanguay RM, Wu T. Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner. Cell Stress Chaperones. 2006;11(2):162–169.
Journal cover image

Published In

Cell Stress Chaperones

DOI

ISSN

1355-8145

Publication Date

2006

Volume

11

Issue

2

Start / End Page

162 / 169

Location

Netherlands

Related Subject Headings

  • Ultraviolet Rays
  • Quercetin
  • Protein Biosynthesis
  • Plasmids
  • Humans
  • HSP70 Heat-Shock Proteins
  • Dose-Response Relationship, Radiation
  • Dose-Response Relationship, Drug
  • DNA Damage
  • DNA