Skip to main content
Journal cover image

Lines and osculating lines of hypersurfaces

Publication ,  Journal Article
Landsberg, JM; Robles, C
Published in: Journal of the London Mathematical Society
January 1, 2010

We define systems of partial differential equations that govern the infinitesimal variation of lines, and osculating lines, through a point of a hypersurface in projective space. The work answers questions posed by J.-M. Hwang. © 2010 London Mathematical Society.

Duke Scholars

Published In

Journal of the London Mathematical Society

DOI

EISSN

1469-7750

ISSN

0024-6107

Publication Date

January 1, 2010

Volume

82

Issue

3

Start / End Page

733 / 746

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Landsberg, J. M., & Robles, C. (2010). Lines and osculating lines of hypersurfaces. Journal of the London Mathematical Society, 82(3), 733–746. https://doi.org/10.1112/jlms/jdq051
Landsberg, J. M., and C. Robles. “Lines and osculating lines of hypersurfaces.” Journal of the London Mathematical Society 82, no. 3 (January 1, 2010): 733–46. https://doi.org/10.1112/jlms/jdq051.
Landsberg JM, Robles C. Lines and osculating lines of hypersurfaces. Journal of the London Mathematical Society. 2010 Jan 1;82(3):733–46.
Landsberg, J. M., and C. Robles. “Lines and osculating lines of hypersurfaces.” Journal of the London Mathematical Society, vol. 82, no. 3, Jan. 2010, pp. 733–46. Scopus, doi:10.1112/jlms/jdq051.
Landsberg JM, Robles C. Lines and osculating lines of hypersurfaces. Journal of the London Mathematical Society. 2010 Jan 1;82(3):733–746.
Journal cover image

Published In

Journal of the London Mathematical Society

DOI

EISSN

1469-7750

ISSN

0024-6107

Publication Date

January 1, 2010

Volume

82

Issue

3

Start / End Page

733 / 746

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics