
Lines and osculating lines of hypersurfaces
Publication
, Journal Article
Landsberg, JM; Robles, C
Published in: Journal of the London Mathematical Society
January 1, 2010
We define systems of partial differential equations that govern the infinitesimal variation of lines, and osculating lines, through a point of a hypersurface in projective space. The work answers questions posed by J.-M. Hwang. © 2010 London Mathematical Society.
Duke Scholars
Published In
Journal of the London Mathematical Society
DOI
EISSN
1469-7750
ISSN
0024-6107
Publication Date
January 1, 2010
Volume
82
Issue
3
Start / End Page
733 / 746
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Landsberg, J. M., & Robles, C. (2010). Lines and osculating lines of hypersurfaces. Journal of the London Mathematical Society, 82(3), 733–746. https://doi.org/10.1112/jlms/jdq051
Landsberg, J. M., and C. Robles. “Lines and osculating lines of hypersurfaces.” Journal of the London Mathematical Society 82, no. 3 (January 1, 2010): 733–46. https://doi.org/10.1112/jlms/jdq051.
Landsberg JM, Robles C. Lines and osculating lines of hypersurfaces. Journal of the London Mathematical Society. 2010 Jan 1;82(3):733–46.
Landsberg, J. M., and C. Robles. “Lines and osculating lines of hypersurfaces.” Journal of the London Mathematical Society, vol. 82, no. 3, Jan. 2010, pp. 733–46. Scopus, doi:10.1112/jlms/jdq051.
Landsberg JM, Robles C. Lines and osculating lines of hypersurfaces. Journal of the London Mathematical Society. 2010 Jan 1;82(3):733–746.

Published In
Journal of the London Mathematical Society
DOI
EISSN
1469-7750
ISSN
0024-6107
Publication Date
January 1, 2010
Volume
82
Issue
3
Start / End Page
733 / 746
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics