
Provable ICA with Unknown Gaussian Noise, and Implications for Gaussian Mixtures and Autoencoders
We present a new algorithm for independent component analysis which has provable performance guarantees. In particular, suppose we are given samples of the form y=Ax+η where A is an unknown but non-singular n×n matrix, x is a random variable whose coordinates are independent and have a fourth order moment strictly less than that of a standard Gaussian random variable and η is an n-dimensional Gaussian random variable with unknown covariance Σ: We give an algorithm that provably recovers A and Σ up to an additive ϵ and whose running time and sample complexity are polynomial in n and 1/ϵ. To accomplish this, we introduce a novel “quasi-whitening” step that may be useful in other applications where there is additive Gaussian noise whose covariance is unknown. We also give a general framework for finding all local optima of a function (given an oracle for approximately finding just one) and this is a crucial step in our algorithm, one that has been overlooked in previous attempts, and allows us to control the accumulation of error when we find the columns of
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Computation Theory & Mathematics
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Computation Theory & Mathematics