New algorithms for learning in presence of errors
We give new algorithms for a variety of randomly-generated instances of computational problems using a linearization technique that reduces to solving a system of linear equations. These algorithms are derived in the context of learning with structured noise, a notion introduced in this paper. This notion is best illustrated with the learning parities with noise (LPN) problem -well-studied in learning theory and cryptography. In the standard version, we have access to an oracle that, each time we press a button, returns a random vector together with a bit that was computed as a•u+η, where is a secret vector, and is a noise bit that is 1 with some probability p. Say p = 1/3. The goal is to recover u. This task is conjectured to be intractable. In the structured noise setting we introduce a slight (?) variation of the model: upon pressing a button, we receive (say) 10 random vectors , and corresponding bits b
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences