Effects of blade count ratio on aerodynamic forcing and mode excitability
The effects of blade count ratio (BCR) on both the steady and unsteady blade loading and the sensitivity of generalized force to a change in mode shape (mode excitability) are studied numerically on two 2D configurations: a subsonic research compressor stage and a turbine stage with supersonic exit. Using the Harmonic Balance method, only a single passage is modeled to represent the actual blade count in a row at a high level of computational efficiency. BCR variation is achieved by scaling the downstream airfoils with a fixed chord-to-pitch ratio, thus preserving the steady-state aerodynamics. It is found that the interaction among potential-, wake-, and shock-related excitations, and the relative strength of harmonic contents are dependent on BCR, resulting in a non-monotonic correlation between unsteady loading and BCR in the downstream row. It is also found that the mode excitability can be sensitive to BCR variation in both up- and downstream rows in some cases. To the best of authors' knowledge, this is the first work on BCR study involving supersonic flow and a discussion of mode excitability patterns.