First principles thermodynamical modeling of the binodal and spinodal curves in lead chalcogenides.
High-throughput ab initio calculations, cluster expansion techniques, and thermodynamic modeling have been synergistically combined to characterize the binodal and the spinodal decompositions features in the pseudo-binary lead chalcogenides PbSe-PbTe, PbS-PbTe, and PbS-PbSe. While our results agree with the available experimental data, our consolute temperatures substantially improve with respect to previous computational modeling. The computed phase diagrams corroborate that in ad hoc synthesis conditions the formation of nanostructure may occur justifying the low thermal conductivities in these alloys. The presented approach, making a rational use of online quantum repositories, can be extended to study thermodynamical and kinetic properties of materials of technological interest.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
- 09 Engineering
- 03 Chemical Sciences
- 02 Physical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
- 09 Engineering
- 03 Chemical Sciences
- 02 Physical Sciences