Optically-trapped Fermi gas
Summary form only given. Cold, dense gases of fermions offer exciting new opportunities for fundamental studies of quantum degeneracy, collective behavior, and superfluidity. Fermionic 6Li has been the subject of numerous theoretical treatments. This is due in part to its anomalously large and negative triplet scattering length, aT=-2160 aO, which arises from a near zero energy resonance. The large scattering length leads to two-state mixtures which are predicted to undergo a transition to a superfluid state at a relatively high temperature. To increase our well depth, we retroreflect the CO2 beam which forms our optical trap, nearly doubling the intensity of the trapping field and thus the well depth. We will discuss this technique and its effect on evaporative cooling, and report our progress towards producing a degenerate gas of 6Li.