Nonlinear Elastic Plate in a Flow of Gas: Recent Results and Conjectures
We give a survey of recent results on flow-structure interactions modeled by a modified wave equation coupled at an interface with equations of nonlinear elasticity. Both subsonic and supersonic flow velocities are considered. The focus of the discussion here is on the interesting mathematical aspects of physical phenomena occurring in aeroelasticity, such as flutter and divergence. This leads to a partial differential equation treatment of issues such as well-posedness of finite energy solutions, and long-time (asymptotic) behavior. The latter includes theory of asymptotic stability, convergence to equilibria, and to global attracting sets. We complete the discussion with several well known observations and conjectures based on experimental/numerical studies.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Mathematics
- 4901 Applied mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Mathematics
- 4901 Applied mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics