Structures and energies of low-lying doublet excited states of N3 from accurate configuration interaction calculations
The low-lying doublet excited states of the azide radical (N3) have been studied at a highly multireference ab initio level of theory including basis sets up to augmented quadruple- quality. A full hypersurface scan under C2v restrictions for five low-lying bent N3 states (2A2, 2A1, 2B1, and two 2B2) revealed a highly complex potential surface manifold with many stationary points, conical intersections and multiple surface crossings, all of which have been characterized at a high level of theory. The behavior of these states is discussed, especially as a function of the NNN angle. At least two new low-lying pathways on the excited surfaces leading from the linear to the cyclic-N3 region were found, both involving the components of the degenerate excited 2u state of linear N3.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 3407 Theoretical and computational chemistry
- 3406 Physical chemistry
- 0307 Theoretical and Computational Chemistry
- 0306 Physical Chemistry (incl. Structural)
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 3407 Theoretical and computational chemistry
- 3406 Physical chemistry
- 0307 Theoretical and Computational Chemistry
- 0306 Physical Chemistry (incl. Structural)
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics