
A note on Monge-Ampère Keller-Segel equation
Publication
, Journal Article
Huang, H; Liu, JG
Published in: Applied Mathematics Letters
November 1, 2016
This note studies the Monge-Ampère Keller-Segel equation in a periodic domain Td(d≥2), a fully nonlinear modification of the Keller-Segel equation where the Monge-Ampère equation det(I+2v)=u+1 substitutes for the usual Poisson equation Δv=u. The existence of global weak solutions is obtained for this modified equation. Moreover, we prove the regularity in L∞(0,T;L∞W1,1+γ(Td)) for some γ>0.
Duke Scholars
Published In
Applied Mathematics Letters
DOI
EISSN
1873-5452
ISSN
0893-9659
Publication Date
November 1, 2016
Volume
61
Start / End Page
26 / 34
Related Subject Headings
- Applied Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Huang, H., & Liu, J. G. (2016). A note on Monge-Ampère Keller-Segel equation. Applied Mathematics Letters, 61, 26–34. https://doi.org/10.1016/j.aml.2016.05.003
Huang, H., and J. G. Liu. “A note on Monge-Ampère Keller-Segel equation.” Applied Mathematics Letters 61 (November 1, 2016): 26–34. https://doi.org/10.1016/j.aml.2016.05.003.
Huang H, Liu JG. A note on Monge-Ampère Keller-Segel equation. Applied Mathematics Letters. 2016 Nov 1;61:26–34.
Huang, H., and J. G. Liu. “A note on Monge-Ampère Keller-Segel equation.” Applied Mathematics Letters, vol. 61, Nov. 2016, pp. 26–34. Scopus, doi:10.1016/j.aml.2016.05.003.
Huang H, Liu JG. A note on Monge-Ampère Keller-Segel equation. Applied Mathematics Letters. 2016 Nov 1;61:26–34.

Published In
Applied Mathematics Letters
DOI
EISSN
1873-5452
ISSN
0893-9659
Publication Date
November 1, 2016
Volume
61
Start / End Page
26 / 34
Related Subject Headings
- Applied Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics