Identification of high transverse momentum top quarks in pp collisions at √s= 8 TeV with the ATLAS detector
This paper presents studies of the performance of several jet-substructure techniques, which are used to identify hadronically decaying top quarks with high transverse momentum contained in large-radius jets. The efficiency of identifying top quarks is measured using a sample of top-quark pairs and the rate of wrongly identifying jets from other quarks or gluons as top quarks is measured using multijet events collected with the ATLAS experiment in 20.3 fb−1of 8 TeV proton-proton collisions at the Large Hadron Collider. Predictions from Monte Carlo simulations are found to provide an accurate description of the performance. The techniques are compared in terms of signal efficiency and background rejection using simulations, covering a larger range in jet transverse momenta than accessible in the dataset. Additionally, a novel technique is developed that is optimized to reconstruct top quarks in events with many jets.[Figure not available: see fulltext.]
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Nuclear & Particles Physics
- 5107 Particle and high energy physics
- 5106 Nuclear and plasma physics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
- 0105 Mathematical Physics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Nuclear & Particles Physics
- 5107 Particle and high energy physics
- 5106 Nuclear and plasma physics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
- 0105 Mathematical Physics