The decay of solutions of the Carleman model
Publication
, Journal Article
Illner, R; Reed, MC; Neunzert, H
Published in: Mathematical Methods in the Applied Sciences
January 1, 1981
We prove that for positive initial data u0, v0 ϵ C1 (R) ∩ L1 (R) vanishing at infinity, the solution u(x, t) v(x, t) of the Carleman model satisfies the estimate The constant C depends only on the initial mass m. Copyright © 1981 John Wiley & Sons, Ltd
Duke Scholars
Published In
Mathematical Methods in the Applied Sciences
DOI
EISSN
1099-1476
ISSN
0170-4214
Publication Date
January 1, 1981
Volume
3
Issue
1
Start / End Page
121 / 127
Related Subject Headings
- Applied Mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Illner, R., Reed, M. C., & Neunzert, H. (1981). The decay of solutions of the Carleman model. Mathematical Methods in the Applied Sciences, 3(1), 121–127. https://doi.org/10.1002/mma.1670030110
Illner, R., M. C. Reed, and H. Neunzert. “The decay of solutions of the Carleman model.” Mathematical Methods in the Applied Sciences 3, no. 1 (January 1, 1981): 121–27. https://doi.org/10.1002/mma.1670030110.
Illner R, Reed MC, Neunzert H. The decay of solutions of the Carleman model. Mathematical Methods in the Applied Sciences. 1981 Jan 1;3(1):121–7.
Illner, R., et al. “The decay of solutions of the Carleman model.” Mathematical Methods in the Applied Sciences, vol. 3, no. 1, Jan. 1981, pp. 121–27. Scopus, doi:10.1002/mma.1670030110.
Illner R, Reed MC, Neunzert H. The decay of solutions of the Carleman model. Mathematical Methods in the Applied Sciences. 1981 Jan 1;3(1):121–127.
Published In
Mathematical Methods in the Applied Sciences
DOI
EISSN
1099-1476
ISSN
0170-4214
Publication Date
January 1, 1981
Volume
3
Issue
1
Start / End Page
121 / 127
Related Subject Headings
- Applied Mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics