Skip to main content

Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations

Publication ,  Journal Article
Rak, Z; Rost, CM; Lim, M; Sarker, P; Toher, C; Curtarolo, S; Maria, JP; Brenner, DW
Published in: Journal of Applied Physics
September 7, 2016

Density functional theory calculations were carried out for three entropic rocksalt oxides, (Mg0.1Co0.1Ni0.1Cu0.1Zn0.1)O0.5, termed J14, and J14 + Li and J14 + Sc, to understand the role of charge neutrality and electronic states on their properties, and to probe whether simple expressions may exist that predict stability. The calculations predict that the average lattice constants of the ternary structures provide good approximations to that of the random structures. For J14, Bader charges are transferable between the binary, ternary, and random structures. For J14 + Sc and J14 + Li, average Bader charges in the entropic structures can be estimated from the ternary compositions. Addition of Sc to J14 reduces the majority of Cu, which show large displacements from ideal lattice sites, along with reduction of a few Co and Ni cations. Addition of Li to J14 reduces the lattice constant, consistent with experiment, and oxidizes some of Co as well as some of Ni and Cu. The Bader charges and spin-resolved density of states (DOS) for Co+3 in J14 + Li are very different from Co+2, while for Cu and Ni the Bader charges form continuous distributions and the two DOS are similar for the two oxidation states. Experimental detection of different oxidation states may therefore be challenging for Cu and Ni compared to Co. Based on these results, empirical stability parameters for these entropic oxides may be more complicated than those for non-oxide entropic solids.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of Applied Physics

DOI

EISSN

1089-7550

ISSN

0021-8979

Publication Date

September 7, 2016

Volume

120

Issue

9

Related Subject Headings

  • Applied Physics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Rak, Z., Rost, C. M., Lim, M., Sarker, P., Toher, C., Curtarolo, S., … Brenner, D. W. (2016). Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations. Journal of Applied Physics, 120(9). https://doi.org/10.1063/1.4962135
Rak, Z., C. M. Rost, M. Lim, P. Sarker, C. Toher, S. Curtarolo, J. P. Maria, and D. W. Brenner. “Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations.” Journal of Applied Physics 120, no. 9 (September 7, 2016). https://doi.org/10.1063/1.4962135.
Rak Z, Rost CM, Lim M, Sarker P, Toher C, Curtarolo S, et al. Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations. Journal of Applied Physics. 2016 Sep 7;120(9).
Rak, Z., et al. “Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations.” Journal of Applied Physics, vol. 120, no. 9, Sept. 2016. Scopus, doi:10.1063/1.4962135.
Rak Z, Rost CM, Lim M, Sarker P, Toher C, Curtarolo S, Maria JP, Brenner DW. Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations. Journal of Applied Physics. 2016 Sep 7;120(9).

Published In

Journal of Applied Physics

DOI

EISSN

1089-7550

ISSN

0021-8979

Publication Date

September 7, 2016

Volume

120

Issue

9

Related Subject Headings

  • Applied Physics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences