Skip to main content

Removing cradle artifacts in X-ray images of paintings

Publication ,  Journal Article
Yin, R; Cornelis, B; Fodor, G; Ocon, N; Dunson, D; Daubechies, I
Published in: SIAM Journal on Imaging Sciences
August 30, 2016

We propose an algorithm that removes the visually unpleasant effects of cradling in X-ray images of panel paintings, with the goal of improving the X-ray image readability by art experts. The algorithm consists of three stages. In the first stage the location of the cradle is detected automatically and the grayscale inconsistency, caused by the thickness of the cradle, is corrected. In a second stage we use a method called morphological component analysis to separate the X-ray image into a so-called cartoon part and a texture part, where the latter contains mostly the wood grain from both the panel and the cradling. The algorithm next learns a Bayesian factor model that distinguishes between the texture patterns that originate from the cradle and those from other components such as the panel and/or the painting on the panel surface, and finally uses this to remove the textures associated with the cradle. We apply the algorithm to a number of historically important paintings on panel. We also show how it can be used to digitally remove stretcher artifacts from X-rays of paintings on canvas. We compare our results with those obtained manually by best current practices in art conservation as well as on a ground truth dataset, consisting of X-ray images of a painting before and after removal of the physically attached cradle.

Duke Scholars

Published In

SIAM Journal on Imaging Sciences

DOI

EISSN

1936-4954

Publication Date

August 30, 2016

Volume

9

Issue

3

Start / End Page

1247 / 1272

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 4901 Applied mathematics
  • 4603 Computer vision and multimedia computation
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Yin, R., Cornelis, B., Fodor, G., Ocon, N., Dunson, D., & Daubechies, I. (2016). Removing cradle artifacts in X-ray images of paintings. SIAM Journal on Imaging Sciences, 9(3), 1247–1272. https://doi.org/10.1137/15M1053554
Yin, R., B. Cornelis, G. Fodor, N. Ocon, D. Dunson, and I. Daubechies. “Removing cradle artifacts in X-ray images of paintings.” SIAM Journal on Imaging Sciences 9, no. 3 (August 30, 2016): 1247–72. https://doi.org/10.1137/15M1053554.
Yin R, Cornelis B, Fodor G, Ocon N, Dunson D, Daubechies I. Removing cradle artifacts in X-ray images of paintings. SIAM Journal on Imaging Sciences. 2016 Aug 30;9(3):1247–72.
Yin, R., et al. “Removing cradle artifacts in X-ray images of paintings.” SIAM Journal on Imaging Sciences, vol. 9, no. 3, Aug. 2016, pp. 1247–72. Scopus, doi:10.1137/15M1053554.
Yin R, Cornelis B, Fodor G, Ocon N, Dunson D, Daubechies I. Removing cradle artifacts in X-ray images of paintings. SIAM Journal on Imaging Sciences. 2016 Aug 30;9(3):1247–1272.

Published In

SIAM Journal on Imaging Sciences

DOI

EISSN

1936-4954

Publication Date

August 30, 2016

Volume

9

Issue

3

Start / End Page

1247 / 1272

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 4901 Applied mathematics
  • 4603 Computer vision and multimedia computation