Skip to main content

The Local Edge Machine: inference of dynamic models of gene regulation.

Publication ,  Journal Article
McGoff, KA; Guo, X; Deckard, A; Kelliher, CM; Leman, AR; Francey, LJ; Hogenesch, JB; Haase, SB; Harer, JL
Published in: Genome biology
October 2016

We present a novel approach, the Local Edge Machine, for the inference of regulatory interactions directly from time-series gene expression data. We demonstrate its performance, robustness, and scalability on in silico datasets with varying behaviors, sizes, and degrees of complexity. Moreover, we demonstrate its ability to incorporate biological prior information and make informative predictions on a well-characterized in vivo system using data from budding yeast that have been synchronized in the cell cycle. Finally, we use an atlas of transcription data in a mammalian circadian system to illustrate how the method can be used for discovery in the context of large complex networks.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Genome biology

DOI

EISSN

1474-760X

ISSN

1474-7596

Publication Date

October 2016

Volume

17

Issue

1

Start / End Page

214

Related Subject Headings

  • Transcription, Genetic
  • Saccharomyces cerevisiae
  • Mice
  • Humans
  • Gene Regulatory Networks
  • Gene Expression Regulation
  • Databases, Genetic
  • Computer Simulation
  • Circadian Rhythm
  • Cell Cycle
 

Citation

APA
Chicago
ICMJE
MLA
NLM
McGoff, K. A., Guo, X., Deckard, A., Kelliher, C. M., Leman, A. R., Francey, L. J., … Harer, J. L. (2016). The Local Edge Machine: inference of dynamic models of gene regulation. Genome Biology, 17(1), 214. https://doi.org/10.1186/s13059-016-1076-z
McGoff, Kevin A., Xin Guo, Anastasia Deckard, Christina M. Kelliher, Adam R. Leman, Lauren J. Francey, John B. Hogenesch, Steven B. Haase, and John L. Harer. “The Local Edge Machine: inference of dynamic models of gene regulation.Genome Biology 17, no. 1 (October 2016): 214. https://doi.org/10.1186/s13059-016-1076-z.
McGoff KA, Guo X, Deckard A, Kelliher CM, Leman AR, Francey LJ, et al. The Local Edge Machine: inference of dynamic models of gene regulation. Genome biology. 2016 Oct;17(1):214.
McGoff, Kevin A., et al. “The Local Edge Machine: inference of dynamic models of gene regulation.Genome Biology, vol. 17, no. 1, Oct. 2016, p. 214. Epmc, doi:10.1186/s13059-016-1076-z.
McGoff KA, Guo X, Deckard A, Kelliher CM, Leman AR, Francey LJ, Hogenesch JB, Haase SB, Harer JL. The Local Edge Machine: inference of dynamic models of gene regulation. Genome biology. 2016 Oct;17(1):214.

Published In

Genome biology

DOI

EISSN

1474-760X

ISSN

1474-7596

Publication Date

October 2016

Volume

17

Issue

1

Start / End Page

214

Related Subject Headings

  • Transcription, Genetic
  • Saccharomyces cerevisiae
  • Mice
  • Humans
  • Gene Regulatory Networks
  • Gene Expression Regulation
  • Databases, Genetic
  • Computer Simulation
  • Circadian Rhythm
  • Cell Cycle