The Local Edge Machine: inference of dynamic models of gene regulation.
Publication
, Journal Article
McGoff, KA; Guo, X; Deckard, A; Kelliher, CM; Leman, AR; Francey, LJ; Hogenesch, JB; Haase, SB; Harer, JL
Published in: Genome biology
October 2016
We present a novel approach, the Local Edge Machine, for the inference of regulatory interactions directly from time-series gene expression data. We demonstrate its performance, robustness, and scalability on in silico datasets with varying behaviors, sizes, and degrees of complexity. Moreover, we demonstrate its ability to incorporate biological prior information and make informative predictions on a well-characterized in vivo system using data from budding yeast that have been synchronized in the cell cycle. Finally, we use an atlas of transcription data in a mammalian circadian system to illustrate how the method can be used for discovery in the context of large complex networks.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
Genome biology
DOI
EISSN
1474-760X
ISSN
1474-7596
Publication Date
October 2016
Volume
17
Issue
1
Start / End Page
214
Related Subject Headings
- Transcription, Genetic
- Saccharomyces cerevisiae
- Mice
- Humans
- Gene Regulatory Networks
- Gene Expression Regulation
- Databases, Genetic
- Computer Simulation
- Circadian Rhythm
- Cell Cycle
Citation
APA
Chicago
ICMJE
MLA
NLM
McGoff, K. A., Guo, X., Deckard, A., Kelliher, C. M., Leman, A. R., Francey, L. J., … Harer, J. L. (2016). The Local Edge Machine: inference of dynamic models of gene regulation. Genome Biology, 17(1), 214. https://doi.org/10.1186/s13059-016-1076-z
McGoff, Kevin A., Xin Guo, Anastasia Deckard, Christina M. Kelliher, Adam R. Leman, Lauren J. Francey, John B. Hogenesch, Steven B. Haase, and John L. Harer. “The Local Edge Machine: inference of dynamic models of gene regulation.” Genome Biology 17, no. 1 (October 2016): 214. https://doi.org/10.1186/s13059-016-1076-z.
McGoff KA, Guo X, Deckard A, Kelliher CM, Leman AR, Francey LJ, et al. The Local Edge Machine: inference of dynamic models of gene regulation. Genome biology. 2016 Oct;17(1):214.
McGoff, Kevin A., et al. “The Local Edge Machine: inference of dynamic models of gene regulation.” Genome Biology, vol. 17, no. 1, Oct. 2016, p. 214. Epmc, doi:10.1186/s13059-016-1076-z.
McGoff KA, Guo X, Deckard A, Kelliher CM, Leman AR, Francey LJ, Hogenesch JB, Haase SB, Harer JL. The Local Edge Machine: inference of dynamic models of gene regulation. Genome biology. 2016 Oct;17(1):214.
Published In
Genome biology
DOI
EISSN
1474-760X
ISSN
1474-7596
Publication Date
October 2016
Volume
17
Issue
1
Start / End Page
214
Related Subject Headings
- Transcription, Genetic
- Saccharomyces cerevisiae
- Mice
- Humans
- Gene Regulatory Networks
- Gene Expression Regulation
- Databases, Genetic
- Computer Simulation
- Circadian Rhythm
- Cell Cycle