
Classification of smooth horizontal Schubert varieties
Publication
, Journal Article
Kerr, M; Robles, C
Published in: European Journal of Mathematics
June 1, 2017
We show that the smooth horizontal Schubert subvarieties of a rational homogeneous variety G / P are homogeneously embedded cominuscule [InlineEquation not available: see fulltext.], and are classified by subdiagrams of a Dynkin diagram. This generalizes the classification of smooth Schubert varieties in cominuscule G / P.
Duke Scholars
Published In
European Journal of Mathematics
DOI
EISSN
2199-6768
ISSN
2199-675X
Publication Date
June 1, 2017
Volume
3
Issue
2
Start / End Page
289 / 310
Related Subject Headings
- 4905 Statistics
- 4904 Pure mathematics
- 4901 Applied mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Kerr, M., & Robles, C. (2017). Classification of smooth horizontal Schubert varieties. European Journal of Mathematics, 3(2), 289–310. https://doi.org/10.1007/s40879-017-0140-x
Kerr, M., and C. Robles. “Classification of smooth horizontal Schubert varieties.” European Journal of Mathematics 3, no. 2 (June 1, 2017): 289–310. https://doi.org/10.1007/s40879-017-0140-x.
Kerr M, Robles C. Classification of smooth horizontal Schubert varieties. European Journal of Mathematics. 2017 Jun 1;3(2):289–310.
Kerr, M., and C. Robles. “Classification of smooth horizontal Schubert varieties.” European Journal of Mathematics, vol. 3, no. 2, June 2017, pp. 289–310. Scopus, doi:10.1007/s40879-017-0140-x.
Kerr M, Robles C. Classification of smooth horizontal Schubert varieties. European Journal of Mathematics. 2017 Jun 1;3(2):289–310.

Published In
European Journal of Mathematics
DOI
EISSN
2199-6768
ISSN
2199-675X
Publication Date
June 1, 2017
Volume
3
Issue
2
Start / End Page
289 / 310
Related Subject Headings
- 4905 Statistics
- 4904 Pure mathematics
- 4901 Applied mathematics