Skip to main content
Journal cover image

A four-variable automorphic kernel function

Publication ,  Journal Article
Getz, JR
Published in: Research in Mathematical Sciences
December 1, 2016

Let F be a number field, let AF be its ring of adeles, and let g1, g2, h1, h2∈ GL 2(AF). We provide an absolutely convergent geometric expression for ∑πKπ(g1,g2)Kπ∨(h1,h2)Ress=1LS(s,π×π∨),where the sum is over isomorphism classes of cuspidal automorphic representations π of GL 2(AF). Here Kπ is the typical kernel function representing the action of a test function on the space of π.

Duke Scholars

Published In

Research in Mathematical Sciences

DOI

EISSN

2197-9847

ISSN

2522-0144

Publication Date

December 1, 2016

Volume

3

Issue

1
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Getz, J. R. (2016). A four-variable automorphic kernel function. Research in Mathematical Sciences, 3(1). https://doi.org/10.1186/s40687-016-0069-6
Getz, J. R. “A four-variable automorphic kernel function.” Research in Mathematical Sciences 3, no. 1 (December 1, 2016). https://doi.org/10.1186/s40687-016-0069-6.
Getz JR. A four-variable automorphic kernel function. Research in Mathematical Sciences. 2016 Dec 1;3(1).
Getz, J. R. “A four-variable automorphic kernel function.” Research in Mathematical Sciences, vol. 3, no. 1, Dec. 2016. Scopus, doi:10.1186/s40687-016-0069-6.
Getz JR. A four-variable automorphic kernel function. Research in Mathematical Sciences. 2016 Dec 1;3(1).
Journal cover image

Published In

Research in Mathematical Sciences

DOI

EISSN

2197-9847

ISSN

2522-0144

Publication Date

December 1, 2016

Volume

3

Issue

1