A nonabelian trace formula
Publication
, Journal Article
Getz, JR; Herman, PE
Published in: Research in Mathematical Sciences
December 1, 2015
Let E/F be an everywhere unramified extension of number fields with Gal(E/F) simple and nonabelian. In a recent paper, the first named author suggested an approach to nonsolvable base change and descent of automorphic representations of GL
Duke Scholars
Published In
Research in Mathematical Sciences
DOI
EISSN
2197-9847
ISSN
2522-0144
Publication Date
December 1, 2015
Volume
2
Issue
1
Citation
APA
Chicago
ICMJE
MLA
NLM
Getz, J. R., & Herman, P. E. (2015). A nonabelian trace formula. Research in Mathematical Sciences, 2(1). https://doi.org/10.1186/s40687-015-0025-x
Getz, J. R., and P. E. Herman. “A nonabelian trace formula.” Research in Mathematical Sciences 2, no. 1 (December 1, 2015). https://doi.org/10.1186/s40687-015-0025-x.
Getz JR, Herman PE. A nonabelian trace formula. Research in Mathematical Sciences. 2015 Dec 1;2(1).
Getz, J. R., and P. E. Herman. “A nonabelian trace formula.” Research in Mathematical Sciences, vol. 2, no. 1, Dec. 2015. Scopus, doi:10.1186/s40687-015-0025-x.
Getz JR, Herman PE. A nonabelian trace formula. Research in Mathematical Sciences. 2015 Dec 1;2(1).
Published In
Research in Mathematical Sciences
DOI
EISSN
2197-9847
ISSN
2522-0144
Publication Date
December 1, 2015
Volume
2
Issue
1