A complete knot invariant from contact homology
Publication
, Journal Article
Ekholm, T; Ng, L; Shende, V
Published in: Inventiones Mathematicae
March 1, 2018
We construct an enhanced version of knot contact homology, and show that we can deduce from it the group ring of the knot group together with the peripheral subgroup. In particular, it completely determines a knot up to smooth isotopy. The enhancement consists of the (fully noncommutative) Legendrian contact homology associated to the union of the conormal torus of the knot and a disjoint cotangent fiber sphere, along with a product on a filtered part of this homology. As a corollary, we obtain a new, holomorphic-curve proof of a result of the third author that the Legendrian isotopy class of the conormal torus is a complete knot invariant.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
Inventiones Mathematicae
DOI
ISSN
0020-9910
Publication Date
March 1, 2018
Volume
211
Issue
3
Start / End Page
1149 / 1200
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Ekholm, T., Ng, L., & Shende, V. (2018). A complete knot invariant from contact homology. Inventiones Mathematicae, 211(3), 1149–1200. https://doi.org/10.1007/s00222-017-0761-1
Ekholm, T., L. Ng, and V. Shende. “A complete knot invariant from contact homology.” Inventiones Mathematicae 211, no. 3 (March 1, 2018): 1149–1200. https://doi.org/10.1007/s00222-017-0761-1.
Ekholm T, Ng L, Shende V. A complete knot invariant from contact homology. Inventiones Mathematicae. 2018 Mar 1;211(3):1149–200.
Ekholm, T., et al. “A complete knot invariant from contact homology.” Inventiones Mathematicae, vol. 211, no. 3, Mar. 2018, pp. 1149–200. Scopus, doi:10.1007/s00222-017-0761-1.
Ekholm T, Ng L, Shende V. A complete knot invariant from contact homology. Inventiones Mathematicae. 2018 Mar 1;211(3):1149–1200.
Published In
Inventiones Mathematicae
DOI
ISSN
0020-9910
Publication Date
March 1, 2018
Volume
211
Issue
3
Start / End Page
1149 / 1200
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics