Skip to main content
Journal cover image

Geometry of the Smallest 1-form Laplacian Eigenvalue on Hyperbolic Manifolds

Publication ,  Journal Article
Lipnowski, M; Stern, M
Published in: Geometric and Functional Analysis
December 1, 2018

We relate small 1-form Laplacian eigenvalues to relative cycle complexity on closed hyperbolic manifolds: small eigenvalues correspond to closed geodesics no multiple of which bounds a surface of small genus. We describe potential applications of this equivalence principle toward proving optimal torsion homology growth in families of hyperbolic 3-manifolds Benjamini–Schramm converging to H3.

Duke Scholars

Published In

Geometric and Functional Analysis

DOI

ISSN

1016-443X

Publication Date

December 1, 2018

Volume

28

Issue

6

Start / End Page

1717 / 1755

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lipnowski, M., & Stern, M. (2018). Geometry of the Smallest 1-form Laplacian Eigenvalue on Hyperbolic Manifolds. Geometric and Functional Analysis, 28(6), 1717–1755. https://doi.org/10.1007/s00039-018-0471-x
Lipnowski, M., and M. Stern. “Geometry of the Smallest 1-form Laplacian Eigenvalue on Hyperbolic Manifolds.” Geometric and Functional Analysis 28, no. 6 (December 1, 2018): 1717–55. https://doi.org/10.1007/s00039-018-0471-x.
Lipnowski M, Stern M. Geometry of the Smallest 1-form Laplacian Eigenvalue on Hyperbolic Manifolds. Geometric and Functional Analysis. 2018 Dec 1;28(6):1717–55.
Lipnowski, M., and M. Stern. “Geometry of the Smallest 1-form Laplacian Eigenvalue on Hyperbolic Manifolds.” Geometric and Functional Analysis, vol. 28, no. 6, Dec. 2018, pp. 1717–55. Scopus, doi:10.1007/s00039-018-0471-x.
Lipnowski M, Stern M. Geometry of the Smallest 1-form Laplacian Eigenvalue on Hyperbolic Manifolds. Geometric and Functional Analysis. 2018 Dec 1;28(6):1717–1755.
Journal cover image

Published In

Geometric and Functional Analysis

DOI

ISSN

1016-443X

Publication Date

December 1, 2018

Volume

28

Issue

6

Start / End Page

1717 / 1755

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics