Reconstructing Real-Valued Functions from Unsigned Coefficients with Respect to Wavelet and Other Frames
In this paper we consider the following problem of phase retrieval: given a collection of real-valued band-limited functions {ψλ}L2(Rd) that constitutes a semi-discrete frame, we ask whether any real-valued function f∈ L2(Rd) can be uniquely recovered from its unsigned convolutions { | f∗ ψλ| } λ∈Λ. We find that under some mild assumptions on the semi-discrete frame and if f has exponential decay at ∞, it suffices to know | f∗ ψλ| on suitably fine lattices to uniquely determine f (up to a global sign factor). We further establish a local stability property of our reconstruction problem. Finally, for two concrete examples of a (discrete) frame of L2(Rd) , d= 1 , 2 , we show that through sufficient oversampling one obtains a frame such that any real-valued function with exponential decay can be uniquely recovered from its unsigned frame coefficients.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics