Space - Time coding and signal processing for high data rate wireless communications
The information capacity of wireless communication systems can be increased dramatically by employing multiple transmit and receive antennas [Foschini GJ, Gans MJ. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Communications Magazine 1998; 6 311-335. Telatar E. Capacity of Multi-Antenna Gaussian Channels, Technical Memorandum, AT&T Bell Laboratories, 1995.] An effective approach to increasing data rate over wireless channels is to employ coding techniques appropriate to multiple transmit antennas, that is space-time coding. Space-time codes introduce temporal and spatial correlation into signals transmitted from different antennas, in order to provide diversity at the receiver, and coding gain over an uncoded system. The spatial-temporal structure of these codes can be exploited to further increase the capacity of wireless systems with a relatively simple receiver structure. This paper provides an overview of space-time coding techniques and the associated signal processing framework. Copyright © 2001 John Wiley & Sons, Ltd.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 4606 Distributed computing and systems software
- 4008 Electrical engineering
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0805 Distributed Computing
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 4606 Distributed computing and systems software
- 4008 Electrical engineering
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0805 Distributed Computing