
A random particle blob method for the keller-segel equation and convergence analysis
Publication
, Journal Article
Liu, JG; Yang, R
Published in: Mathematics of Computation
January 1, 2017
In this paper, we introduce a random particle blob method for the Keller-Segel equation (with dimension d ≥ 2) and establish a rigorous convergence analysis.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
Mathematics of Computation
DOI
ISSN
0025-5718
Publication Date
January 1, 2017
Volume
86
Issue
304
Start / End Page
725 / 745
Related Subject Headings
- Numerical & Computational Mathematics
- 4903 Numerical and computational mathematics
- 4901 Applied mathematics
- 0802 Computation Theory and Mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Liu, J. G., & Yang, R. (2017). A random particle blob method for the keller-segel equation and convergence analysis. Mathematics of Computation, 86(304), 725–745. https://doi.org/10.1090/mcom/3118
Liu, J. G., and R. Yang. “A random particle blob method for the keller-segel equation and convergence analysis.” Mathematics of Computation 86, no. 304 (January 1, 2017): 725–45. https://doi.org/10.1090/mcom/3118.
Liu JG, Yang R. A random particle blob method for the keller-segel equation and convergence analysis. Mathematics of Computation. 2017 Jan 1;86(304):725–45.
Liu, J. G., and R. Yang. “A random particle blob method for the keller-segel equation and convergence analysis.” Mathematics of Computation, vol. 86, no. 304, Jan. 2017, pp. 725–45. Scopus, doi:10.1090/mcom/3118.
Liu JG, Yang R. A random particle blob method for the keller-segel equation and convergence analysis. Mathematics of Computation. 2017 Jan 1;86(304):725–745.

Published In
Mathematics of Computation
DOI
ISSN
0025-5718
Publication Date
January 1, 2017
Volume
86
Issue
304
Start / End Page
725 / 745
Related Subject Headings
- Numerical & Computational Mathematics
- 4903 Numerical and computational mathematics
- 4901 Applied mathematics
- 0802 Computation Theory and Mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics