Multifunctional metamaterial pyroelectric infrared detectors
Pyroelectric materials enable the construction of highperformance yet low-cost and uncooled detectors throughout the infrared spectrum. These devices have been used as broadband sensors and, when combined with an interferometric element or filter, can provide spectral selectivity. Here we propose the concept of and demonstrate a new architecture that uses a multifunctional metamaterial absorber to directly absorb the incident longwave IR (8-12 µm) energy in a thin-film lithium niobate layer and also to function as the contacts for the twoterminal detector. Our device achieves a narrowband (560 nm FWHM at 10.73 µm), yet highly efficient (86%) absorption. Themetamaterial creates high field concentration, reducing temperature fluctuation noise, and lowering device capacitance and loss tangent noise. The metamaterial design paradigm applied to detectors thus results in a very fast planar device with a thermal time constant of 28.9 ms with a room temperature detectivity, D*, of 107 cm W/ √Hz.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics