Skip to main content
Journal cover image

Connecting virulence pathways to cell-cycle progression in the fungal pathogen Cryptococcus neoformans.

Publication ,  Journal Article
Kelliher, CM; Haase, SB
Published in: Current genetics
October 2017

Proliferation and host evasion are critical processes to understand at a basic biological level for improving infectious disease treatment options. The human fungal pathogen Cryptococcus neoformans causes fungal meningitis in immunocompromised individuals by proliferating in cerebrospinal fluid. Current antifungal drugs target "virulence factors" for disease, such as components of the cell wall and polysaccharide capsule in C. neoformans. However, mechanistic links between virulence pathways and the cell cycle are not as well studied. Recently, cell-cycle synchronized C. neoformans cells were profiled over time to identify gene expression dynamics (Kelliher et al., PLoS Genet 12(12):e1006453, 2016). Almost 20% of all genes in the C. neoformans genome were periodically activated during the cell cycle in rich media, including 40 genes that have previously been implicated in virulence pathways. Here, we review important findings about cell-cycle-regulated genes in C. neoformans and provide two examples of virulence pathways-chitin synthesis and G-protein coupled receptor signaling-with their putative connections to cell division. We propose that a "comparative functional genomics" approach, leveraging gene expression timing during the cell cycle, orthology to genes in other fungal species, and previous experimental findings, can lead to mechanistic hypotheses connecting the cell cycle to fungal virulence.

Duke Scholars

Published In

Current genetics

DOI

EISSN

1432-0983

ISSN

0172-8083

Publication Date

October 2017

Volume

63

Issue

5

Start / End Page

803 / 811

Related Subject Headings

  • Virulence Factors
  • Virulence
  • Signal Transduction
  • Receptors, G-Protein-Coupled
  • Protein Subunits
  • Protein Binding
  • Microbiology
  • Gene Regulatory Networks
  • Gene Expression Regulation, Fungal
  • Cryptococcus neoformans
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Kelliher, C. M., & Haase, S. B. (2017). Connecting virulence pathways to cell-cycle progression in the fungal pathogen Cryptococcus neoformans. Current Genetics, 63(5), 803–811. https://doi.org/10.1007/s00294-017-0688-5
Kelliher, Christina M., and Steven B. Haase. “Connecting virulence pathways to cell-cycle progression in the fungal pathogen Cryptococcus neoformans.Current Genetics 63, no. 5 (October 2017): 803–11. https://doi.org/10.1007/s00294-017-0688-5.
Kelliher, Christina M., and Steven B. Haase. “Connecting virulence pathways to cell-cycle progression in the fungal pathogen Cryptococcus neoformans.Current Genetics, vol. 63, no. 5, Oct. 2017, pp. 803–11. Epmc, doi:10.1007/s00294-017-0688-5.
Journal cover image

Published In

Current genetics

DOI

EISSN

1432-0983

ISSN

0172-8083

Publication Date

October 2017

Volume

63

Issue

5

Start / End Page

803 / 811

Related Subject Headings

  • Virulence Factors
  • Virulence
  • Signal Transduction
  • Receptors, G-Protein-Coupled
  • Protein Subunits
  • Protein Binding
  • Microbiology
  • Gene Regulatory Networks
  • Gene Expression Regulation, Fungal
  • Cryptococcus neoformans